第5回惑星探査データ解析実習会

国立天文台RISE月探査プロジェクト 松本晃治 2012.02.20

RISE : Research In SElenodesy

Geodesy:測地学

測地学を月に応用 → Selenodesy:測月学 「かぐや」では月の形状と重力場を観測する ミッション機器を担当

月の基本

月の大きさ 月の軌道 月の回転 月の二分性

地球と月の大きさくらべ

地球:直径約12800km

月:直径約3500km

 注1:実際には、月と地球は平均して 約38万4400km離れています。
 注2:ちなみに、月の重さは地球の 重さの約80分の1です。

Lunar Orbit

FIG. 7.3. The Earth-Moon geometry at a time T_0 and a half orbital period (P) later. The axis 1 is the pole of the lunar orbit, axis 2 is parallel to the pole of the ecliptic, and axis 3 is the pole of the lunar equator. In the absence of dissipation the three axes are coplanar.

2004-12-26 405,363 km 29.94 arc-mins Altitude @ 77.81° 2004-07-02 357,448 km 33.66 arc-mins Altitude @ 21.72°

軌道のおさらい

・ ケプラーの第1法則

すべての惑星は太陽を1つの焦点とする楕円 軌道をえがく。

・ ケプラーの第2法則

惑星と太陽を結ぶ線分が一定時間にはく面積は、それぞれの惑星について一定である。

・ ケプラーの第3法則

惑星の公転周期(T)の2乗と軌道長半径(a)の3 乗の比は惑星によらず一定である。G = 万有 引力定数。

a 軌道長半径
e 離心率
i 軌道傾斜角
Ω 昇交点経度
ω 近点引数
M 平均近点角

軌道の形状を指定する要素

軌道面を指定する要素

軌道の向きを指定する要素

軌道上の位置を指定する要素

軌道面を指定する要素

位置ベクトルと速度ベクトルを合わせて状態ベクトル(state vector)と呼ぶこともある。

ケプラー要素とカーテシアン要素は互いに変換可能。

GEODYNIIにおける軸の定義

月重力場モデル

- ・重力異常とは?
- ・球面調和展開による表現
- ・グリッド分割による表現
- ・かぐや以前のモデルとその問題点

$$SI単位 (m/s2)$$

Gal = 0.01m/s²
mGal = 0.01mm/s² = 10µm/s²
µGal = 0.01µm/s² = 10 nm/s²

重力異常って?

重力異常 = 重力の観測値 - 基準面での重力値 $\Delta g = g_{obs} - \gamma$ 基準面:回転楕円体面、ジオイド(等ポテンシャル面)

Free-air異常

ー般に、基準面で重力値を測るのは難しいので、基準面から 観測点までの高さの差を補正したもの。ただし、観測点と基準面の 間に物質は無いものとする。

 $\Delta g_f = g_{obs} + dg/dz \times h - \gamma$ 地形や天体内部の密度の違いによる補正は一切されていない。

ブーゲー異常

基準面より上にある物質の影響を計算で取り除き,基準面より下の質量異常、 あるいは密度の大小を反映した重力異常。

 $\Delta g_{\rm b} = g_{\rm f} - 2\pi \, \mathrm{G} \, \rho \, \mathrm{h}$

ρ :地殻の密度、h:基準面から測った観測点の高さ。

GOCE geoid

月・惑星の重力場 どうやってはかる?

電波などを利用して人工衛星の飛び方を調べる

ドップラー観測

重力場をどのようして表すか

1. 球面調和展開

$$V = \frac{GM}{r} \left[1 + \sum_{n=2}^{\infty} \sum_{m=0}^{n} \left(\frac{R}{r} \right)^{n} (C_{nm} \cos m\lambda + S_{nm} \sin m\lambda) P_{nm} (\cos \theta) \right]$$

重力ポテンシャルの 非球状成分を表す。

重カポテンシャルVの球面調和展開 (重ねあわせで表す→フーリエ展開の3次元版)

G:万有引力定数

M:天体の質量

R:天体の平均赤道半径(月では1738.0kmとする場合が多い) (r,λ,θ):天体の重心を原点とした球座標(θ=余緯度)

求めたいもの —

重心から離れるほど

の影響が小さくなる

(見えにくくなる)。

高次項(nが大きい項)

R < r

→ C_{nm},S_{nm}:ストークス係数(重力場係数)

P_{nm}:ルジャンドル陪関数

n=1の項は、座標原点の重心からのズレを示す。 これらは、座標原点を重心に選ぶことによりすべて0になる。

2次の球面調和関数

$$P_{20}(\sin\phi) = \frac{1}{2}(3\sin^2\phi - 1) \qquad P_{21}(\sin\phi) = 3\sin\phi\cos\phi$$

$$P_{22}(\sin\phi) = 3\cos^2\phi$$

3次の球面調和関数

ENE Projec

1

n=20, m=10

n=20, m=20

- n:球面調和関数の次数
- λ:波長(m)
- k:波数(m⁻¹)
- R:月の半径

GM 4.90280047600000D+12 R 1.7380000D+06 C20 -0.9088104067710D-04 C21 0.9884415690670D-08 S21 0.4789762867420D-08 C22 0.3462661505670D-04 S22 0.1190433144690D-07 C30 -0.3177659811830D-05 C31 0.2634978329350D-04 S31 0.5465649298950D-05 C32 0.1420053175440D-04 S32 0.4888753415900D-05 C33 0.1228605046040D-04 S33 -0.1764160630100D-05 C40 0.3215025829860D-05 C41 -0.6011540710940D-05 S41 0.1633042938510D-05 C42 -0.7106670374500D-05 S42 -0.6760121764940D-05 C43 -0.1370417118340D-05 -0.1342870281680D-04 S43 C44 -0.6036527199180D-05 S44 0.3943346429900D-05

注!! 規格化された値

. . .

$$(C_{nm}; S_{nm}) = \left[\frac{(n-m)!(2n+1)(2-\delta_{0m})}{(n+m)!}\right]^{1/2} (\overline{C}_{nm}; \overline{S}_{nm})$$
 31

重力場をどのようして表すか

2. グリッド分割

90年代前半までの月重力場モデル (from Lemoine et al., 1997)

Table 1.	Previous	Lunar	Gravity	Analyses
----------	----------	-------	---------	----------

Reference	Data Used	Comment	
Muller and Sjogren [1968]	Lunar Orbiters	Discovery of lunar mascons.	
Lorell and Sjogren [1968]	Lunar Orbiters	4x4 spherical harmonic solution + zonals to $l=8$.	
Wong et al. [1971]	Apollo 8, 12	Solution for discrete masses on near side.	
Michael and Blackshear [1972]	Lunar Orbiters	13x13 spherical harmonic solution.	
Sjogren et al. [1972a,b; 1974b,c]; Muller et al. [1974]	Apollos 14-17	Mapped line of sight (LOS) accelerations with data from as low as 12-20 km altitude.	
Sjogren et al. [1974a]	Apollo subsatellites	Solve for LOS and discrete masses.	
Ferrari [1977]	LO-5 and Apollo subsatellites	16x16 spherical harmonic solution.	
Ananda [1977]		Solve for discrete masses.	
Bryant and Williamson [1974]	Explorer 49	3x3 spherical harmonic solution from Keplerian mean elements.	
Blackshear and Gapcynski [1977]	Explorers 35 and 49	Zonal solution, $J_2 - J_6$ only from Keplerian mean elements.	
Williams et al. [1973]	Lunar laser ranging (LLR)		
Ferrari et al. [1980]	LLR and LO-4		
Bills and Ferrari [1980]	LLR, LO 1-5, Apollo subsatellites, and Apollo 8,12	16x16 spherical harmonic solution	
Konopliv et al. [1993]	LO 1-5 and Apollo subsatellites	60x60 spherical harmonic solution.	
Dickey et al. [1994]	LLR		

Clementine以降SELENE以前 の重力場モデル

Sugano (2004)より

NE brojec

ルナプロスペクターがはかった月重力場

月は同期回転している

アプリオリ拘束条件

$\sigma(\overline{C}_{nm},\overline{S}_{nm}) = \beta \times 10^{-4} / n^2$

高次のシグナルが発散するのを防ぐ。 他の独立な観測がないので、βは経験的に決定(現状、β=3.6)

拘束条件がないと・・・

拘束条件をつけても・・・

Near-side

Far-side

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Selenoid height error (m)

Konopliv et al., 2001

グリッド分割法による解

Lunar Prospectorデータを用いる限り、表側に限定される。

軌道推定・重力場推定

・パラメータ推定
・アークパラメータと
コモンパラメータ
・アプリオリ拘束条件

パラメータ推定

- 残差(観測値−計算値)の計算
- 偏微分の計算
- 最小二乗法の適用
- 収束するまで繰り返し

軌道推定のイメージ図

Fig. 8.1. Least-squares orbit determination: the parameters of a reference trajectory are corrected to find the trajectory which best fits the observations in a least-squares of the residuals sense.

アークパラメータ&コモンパラメータ

- アークパラメータ: 軌道要素、太陽輻射圧係 数、観測バイアス等、アークに依存して変化 するパラメータ
- コモンパラメータ:重力場係数、GM、ラブ数、 観測局位置等、すべてのアークに共通なパラ メータ
- まずアークパラメータを推定し、コモンパラ
 メータは全てのアークが収束した後でまとめ
 て推定する。

行列の結合 $B_1 x = b_1$ アーク1 $B_2 x = b_2$ アーク2 ⋮ $B_n x = b_n$ アークn

$$\begin{bmatrix} B_1 + B_2 + \dots + B_n \end{bmatrix} x = \begin{bmatrix} b_1 + b_2 + \dots + b_n \end{bmatrix}$$
$$B = A^T W A$$
$$x: = \nabla \mathcal{N} \supset \mathcal{J} - \mathcal{J} \quad (重力場係数等)$$

12時間アークの場合、観測数<10000 重力場係数の数:nmax=100で約10000

かぐや重力ミッションの特徴

・平均高度の違う3衛星の追跡 →幅広い波長領域で重力場を推定 ・人工的な加速度の入らな<u>い二つの</u> 子衛星軌道 →長いアークの可能性 →重力場係数の低次項の改良 4-wayドップラー観測(裏側の観測) ・相対VLBI観測(特にSame-beam)

Three satellites constellation

Combination of high, middle and low altitude satellites **Gravity field retrieval** through wide-range of wavelength. Main Sat: 100km × 100km Vstar :100km × 800km

🖥 🛑 Rstar

:100km × 2400km

Arc lengths of three satellites

4-way Doppler measurement

Usuda 64m antenna

rojer

RstarとVstarから発信される電波を多周波 相対VLBI観測する。

VERA Network

rojer

Distribution of VLBI stations for SELENE

解析結果の紹介

- ・裏側の観測は一日にして成らず
- ・4-wayドップラーの「残差」に注目
- ・月重力場 かぐや before & after
- ・地形と重力の対応

An example of time-wise data coverage of SELENE tracking data

2-way Doppler residuals w.r.t. LP100K

LP100Kモデル(かぐや以前のモデル) に対する4-way Doppler 残差

Fig. 1. Four-way Doppler residuals in pass from 23:17 UT on 5 November to 0:12 UT on 6 November 2007. Solid and open symbols indicate the visibility and invisibility of Main from UDSC, respectively. Fourway data are separated into two arcs by unloading of momentum wheels between 00:03 and 00:08.

Namiki et al., Science, 2009

Data and analysis setting for SELENE Gravity Model version h (SGM100h)

Tracking data

- SELENE: 2007.10.20~2008.12.26 & 2009.01.30
 Doppler + range (no VLBI data)
- Historical: LO I-V, A15/16ss, Clementine, LP nominal mission, SMART-1

Setting

- GEODYN II, SOLVE system
- Expanded up to degree and order 100
- Ephemeris: DE421
- A Kaula-type constraint of 3.6x10⁻⁴/n²
- Solar radiation pressure model SELENE Main: box + wing SELENE R/Vstar and other satellites : cannonball
- Mean arc length of Rstar = 2.6 days
- VLBI data not included

4-way Doppler data coverage achieved during the lifetime of Rstar

071031-090130

White solid line indicates the boundary between the near-side and the far-side

Old and new views of farside gravity field

SGM100h

LP100K

Gravity anomaly errors from the full covariance matrix

RMS degree variances

SGM100h gives more than one order of magnitude smaller formal errors with respect to LP100K for degrees 7-39.

SELENE

LALT topography nearside

LALT topography farside

Topography-gravity correspondence

Correlation between gravity and topography

When gravitational attraction from surface topography is subtracted...

Bouguer gravity anomaly: mainly reflect moho relief (boundary between crust and mantle) different between nearside and farside. Dichotomy is clearly visible not only on the surface, but also in the sub-surface.

