THERMAL METAMORPHISM

- Textural and chemical equilibration of unequilibrated chondrites.
- Produced by heating within asteroidal parent bodies.
- Heat source?
 - ²⁶Al heating or possibly other short-lived radionuclices.
 - Gravitational heating
 - Electron magnetic induction
- Occurred for quite extended period time after accretion of asteroidal parent bodies.
- Typified by petrologic types 3-6 ordinary chondrites (E, C, R, unique chondrites).

OVERVIEW

- Concept of petrologic type
- Effects of thermal metamorphism
 - Textural in type 3-6 ordinary chondrites
 - Compositional changes
- Assessing metamorphic temperatures (types 4-6 OCs)
- Metamorphism of type 3 chondrites (UOC, CO)
- Onset of thermal metamorphism in chondrites
- Thermal histories of chondrite parent bodies

THERMAL METAMORPHISM

PETROLOGIC SEQUENCE (Van Schmus and Wood, 1967)

Aqueous Alteration Fluids Thermal Metamorphism Heat ±Fluids

TEXTURAL CHANGES

- Exemplified by ordinary chondrites
- With increasing degrees of thermal metamorphism:
 - Outlines of chondrules become less welldefined.
 - Chondrule glass recrystallizes (feldspar)
 - Opaque fine-grained matrix recrystallizes
 - Progressive recrystallization of chondrules and matrix

Major textural changes

Petrologic Type	3	4	5	6
Matrix	fine-grained opaque in low type 3s	transparen coarsen	it, recrystallized ing from 4 to 6	
Chondrule-matrix Integration	chondrules very sharply defined	chondrules well defined	chondrules readily delineated	chondrules poorly defined
Chondrule glass	clear, isotropic	devitrified, absent		

Mineralogic/Chemical Changes

Petrologic Type	3	4	5	6
Olivine/pyx compositional heterogeneity	≥5%	≤5%	homoge	neous
Low-Ca pyx structure	mostly monoclinic	<20%	>20%	orthorhombic
Feldspar	minor primary	secondary <2 µm grains	secondary 2-50 µm grain	secondary >50µm grains

OLIVINE AND PYROXENE

CLINOENSTATITE⇒ORTHOENSTATITE

- Striated low Ca-pyroxene in type 3 chondrites
 - Quenching protopyroxene forms intergrowth of monoclinic and orthorhombic polymorphs
 - Polysynthetic twinning
- Thermal metamorphism inverts metastable monoclinic polymorph to orthopyroxene.
- Striated appearance disappears through metamorphic sequence.
 In type 6s, opx is present

LOSS OF HIGHLY VOLATILE ELEMENTS

DETERMINATION OF METAMORPHIC TEMPERATURES

- Very challenging even for ordinary chondrites.
- Limited mineral geothermometers are applicable to chondritic assemblages.
- Main thermometers:
 - Two and three pyroxene geothermometry
 - Oxygen isotope thermometry
 - Olivine-spinel geothermometry
 - Ordering of feldspars

- Two pyroxene (Mg-Fe) geothermometry.
- Augite (cpx) and low-Ca pyx are present in chondrules in primitive chondrites
- Not equilibrated in type 4-5 chondrites
- May not even be equilibrated in type 6 chondrites.

METAMORPHIC EQUILIBRATION TEMPERATURES

TYPE 4-6 ORDINARY CHONDRITES

Shaded regions - olivine-spinel data

Kessel et al. (2007) GCA

OLIVINE-SPINEL THERMOMETRY

TYPE 4-6 ORDINARY CHONDRITES

Shaded regions - olivine-spinel data

Kessel et al. (2007) GCA

TEMPERATURE ESTIMATES FOR H chondrites

	Two and three pyx	Ol-sp (Mg-Fe)
LL4	760-1120°C	650-670°°C
LL5	680-1000°C	680-740°C
LL6	790-1090°C	690-790°C
L4		640-675°C
L5		650-710°C
L6	860-1140°C	660-720°C
H4		680-725°C
H5		600-725°C
H6	790-1000°C	700-740°C

Metamorphism in Type 3 chondrites

- Significant metamorphic effects occur between petrologic type 3 and 4 chondrites.
- Compositional zoning develops in olivine
- Matrix recrystallizes
- Mesostasis recrystallizes
- Organic material undergoes graphitization

TRACING METAMORPHISM IN TYPE 3 CHONDRITES

- Divided into subdivisions 3.0, 3.1....3.9
- Thermoluminescence (TL) (Sears et al.)
 - TL sensitivity related to recrystallization of chondrule mesostasis
 - Changes in TL may be related to ordering in feldspar
- Graphitization of organic material (Brearley, 1990; Bonal et al. 2005)
 - Electron diffraction
 - Raman spectroscopy
- Traces progressive graphitization of organic material.

CO3

Chondrule olivines and pyroxenes

Scott and Jones (1990) GCA

COMPOSITIONAL EQUILIBRATION IN CO CHONDRITES

RECRYSTALLIZATION OF MATRIX

Effects of Metamorphism on matrices (CO3s)

- Amorphous matrix in type 3.0 chondrites forms FeO-rich olivine.
- Matrix olivines highly unequilibrated in type 3.0 chondrites.
- Equilibrate early in petrologic sequence.

CO3 chondrites

Variation in Raman spectra (CO3s)

Raman maturity tracers

Variation in d(002) graphite

TYPE 3 CHONDRITES (UOCs) TEMPERATURES OF METAMORPHISM

- Difficult to determine.
 - Constraints are limited.
 - More investigation is necessary
- TL sensitivity (Sears and Hasan, 1980).
 - 500-600°C for type 3 chondrites.
 - Based on low to high albite transition
- Poorly graphitized carbon thermometer (Rietmeijer and MacKinnon, 1985).
 - Type 3.4-3.5 chondrites (300-450°C) (Brearley, 1990)
- Graphitic carbon (Raman)
 - Tieschitz (3.6) >350°C PGC Christophe Michel-Levy and Lautie (1981).
- Equilibration of matrix olivines (Brearley et al. 1989)
 - − >400°C.

 Best current estimate - >250°C for type 3.0, ~350°C for type 3.5

Poorly graphitized carbon thermometer (d002)

ONSET OF THERMAL METAMORPHISM

- Even type 3.0 chondrites show evidence of metamorphism.
- Subtle changes are apparent that merit subdivision of type 3.0s (Grossman and Brearley, 2005).
- Cr-content of olivines in chondrules
- Sulfur distribution in matrices
- Changes in chondrule mesostasis compositions.

Cr distribution in UOC chondrules

Cr exsolution in olivine

Lamellae of Cr-rich phase – probably chromite based on TEM

Grossman and Brearley (2005)

SULFUR IN UOC MATRICES

CO3 MATRICES

Cr variation in very primitive UOCs

Cr variation in very primitive CO3s

STRUCTURE OF OC PARENT BODIES

THERMAL METAMORPHISM

RUBBLE PILE

CONSTRAINTS ON THERMAL STRUCTURE OF ASTEROIDS

- Metallographic cooling rates
- Fission track cooling rates
- Geochronology (U-Th dating)
- Equilibration temperatures of types 4-6 chondrites
- Estimates of sizes of parent bodies of ordinary chondrites

Miyamoto et al. (1981) PLPSC

SOME OUTSTANDING ISSUES

- Metallographic, fission track and geochronology all measure cooling rates >550°C (1-100°C/Ma).
- Cooling rates through 750°C may be higher (100-300°C - ol-sp Mg-Fe exchange) – incompatible with current thermal models (Kessel et al., 2007).
- Metamorphic temperatures are somewhat uncertain
 - Inferred high temperatures may be relicts retained from chondrule formation that have not fully equilibrated.
- Correlation of metamorphic temperatures with petrologic type is typically assumed but may not be justified.

OLIVINE-SPINEL THERMOMETRY

