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Part 1



1. Stellar oscillations 
across the HR diagram





Cepheids

Periods : 1 – 100 d



Solar-type stars

• pressure modes

periods : 3 – 8 min

Periods : 3 – 8 min



 Doradus

• gravity modes

periods : 0.3 – 3 d

Periods : 0.3 – 3 d



 Scuti

Periods : 0.5 – 6 h



Slowly Pulsating B

Periods : 1 – 4 d



 Cephei stars

Periods : 3 – 8 h



Red giants

Radial and non radial 
pulsations



Subdwarf B stars

Periods : 1 – 6 min
 1 h



White dwarfs

Periods : 2 – 15 min



2. Setting the stage

An introduction to 
theoretical asteroseismology



Questions:

Why do we worry about stellar oscillations?

because we want to know the internal structure of stars…

Why don’t we go and look through our telescopes?

because with classical telescopes we can only see the

Stars are essentially opaque and we cannot access
the internal layers through classical observations

surface layers…



But … stars pulsate



Principe de la sismologie

Fourier space
 frequencies

Measure of temporal - stellar flux variations
- radial velocity variations

frequencies

Bases of asteroseismology

Frequencies are characteristics of 
the source  stellar structure 



• standing waves
• strictly periodic  exp(it) with  real
• no amplitude growth
• no amplitude damping

2.1 Adiabatic stellar pulsations 

The specific entropy is conserved during the oscillation
 S = 0

No energy exchange between mass elements



3D standing waves – a star

3 numbers to describe the mode



n : radial order radial nodes n = 0, ..., ∞

l : degree nodal planes l = 0, ..., ∞

m : azimuthal order meridian nodal planes      m = – l, ..., + l

3D standing waves – a star



2.1.1 Adiabatic pulsation modes

Perturbation and linearization of the equations of
• mass conservation
• momentum conservation
• energy conservation  S = 0

X(r,,,t) = X(r)  Yℓ
m(,)  exp(it)

Spherical harmonics
Yℓ

m (, )



Cowling approximation : ’ = 0

Unno, Osaki, Ando, Saio, Shibahashi 1989 Non radial oscillations of stars 

c2 = 1 P/
1 = (lnP/ln)S

 = (lnT/lnP)
 = (ln/lnP)

N : Brunt-Väisälä frequency

mass and momentum equations  2nd order eigenvalue problem

• N2 = 0 in a convective zone
• N2 develops a peak in a region of rapidly

varying mean molecular weight



Lℓ: Lamb frequency

Cowling approximation : ’ = 0

c2 = 1 P/
1 = (lnP/ln)S

 = (lnT/lnP)
 = (ln/lnP)

depends on l

mass and momentum equations  2nd order eigenvalue problem

Unno, Osaki, Ando, Saio, Shibahashi 1989 Non radial oscillations of stars 



Local analysis

r  exp(ikrr)

kr
2 = (1/c)2 (2 – Lℓ

2) (2 – N2)

Assumption:
• constant coefficients (equilibrium values)

Plane wave equation

k : wavenumber
kr : radial component
kh: horizontal component

Dispersion relation relating wave number and frequency



kr
2 > 0 : propagation kr

2 < 0 : evanescence
N2 < 2 < Ll

2

Ll
2 < 2 < N2

Local analysis

kr
2 = (1/c)2 (2 – Lℓ

2) (2 – N2)

1
2 < 2

2 <  ··· 
p1 p2

2 > N2, Lℓ
2

pressure mode
2 < N2, Lℓ

2

gravity mode

1
2 > 2

2 >  ··· 0       
g1 g2

r(r)  exp(ikrr)

Restoring force: pressure Restoring force: gravity



N

L1
L5

L20

r/R


(

H
z)

Propagation diagram

turning point :

 = Lℓ (r) 

p-mode propagation cavity : 

 > N, Lℓ (r) Sun

g-mode propagation cavity : 

 < N, Lℓ (r) 



N

L1

L2lo
g 


(
H

z)

r/R

As the star evolves, N  as a result of the formation of a -gradient

g-mode
cavity

tiny evanescent zone

Interaction between p- and g-modes
mixed modes:
• « g » behaviour in the g-mode cavity
• « p » behaviour in the p-mode cavity

p-mode cavity



     immm
ecosP,Y 11 

Effect of rotation

Sperical symmetry no terms f() in the equations
modes of given l and different m 

have the same frequency

Coriolis term C <<

With a rotation , degeneracy is lifted

   + mC - m

l=2
no rotation 

m=–2 m=0 m=1 m=2m=–1

rotation 

Since modes of different l probes layers located at

different depths, rotational splittings gives  (r)



as l increases, the p cavity

becomes smaller

r/R

modes with different (l,)

probe different layers

Li

Lj

i<j

The acoustic cavity for a mode (l,) is defined as

the interval between two total reflections
• at the inner turning point – such that  = Ll
• at the surface – if   c = 2c

c : cut-off frequency = cs /2HP (c, = 5.7 mHz)

A standing wave is formed when all the
« bounces » on the surface lead to a
constructive interference pattern

2.1.2 Pressure  modes                       2 > N2, Lℓ
2



k2 = kr
2 + kh

2  2/c2
constraint on the sound
speed in the outer layers

mean molecular weight

chemical composition 
partial ionization,

equation of state 

temperature distribution   

convective envelope limit

Pressure  modes                              2 > N2, Lℓ
2

kr
2 = 2/c2 (Lℓ

2/2 – 1) (N2/2 – 1)

kr
2  2/c2 (1 – Lℓ

2/2) kh
2 = l (l+1)/r2 = Ll

2/c2

2 >> N2



Seismic indicators: 1. Large separation

l = 0

l = 1

l = 2



n,l  (n +l /2 + 1/4 + ) 

<>
-1

Pressure  modes – asymptotic regime n >> 

Tassoul 1980, Smeyers & Tassoul 1988



Seismic indicators: 1. Large separation

Constraint on the distribution of the sound speed
in the p-mode cavity

-1

Pressure  modes – asymptotic regime n >> 

Tassoul 1980, Smeyers & Tassoul 1988



High Altitude Observatory

Large separation - Echelle diagram

 =  modulo()

Smeyers et al. 1988: In ESA, Seismology of the Sun and Sun-
Like Stars p.623-627



Seismic indicators: 2. Small separation

Pressure  modes – asymptotic regime n>> 

n,l =  (n + l/2 + ) + n,l

l = 0

l = 1

l = 2

(n,l)

(n-1,l+2)





Seismic indicators

Pressure  modes – asymptotic regime n >> 

n,l =  (n + l/2 + ) + n,l

l = 0

l = 1

l = 2

n,l = n,l – n-1,l +2

(n-1,l+2)

(n,l)


n,l



surfacecenter

c2

center surface

c2

dc/dr > 0

Small separation  Evolutionary state 

ZAMS As H transforms into He
 near the center

c2


dc/dr < 0

= n,l – n-1,l +2



Main Sequence Asteroseismic Diagram  

Christensen-Dalsgaard 1982

Xc

 M/R3

global parameters

ev
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e ZAMS

TAMS



large separation

small separation

small spacing

Seismic indicators

depends on dc/dr

discontinuities in dc/dr

Pressure  modes – asymptotic regime n>> 

n,l = n,l – n-1,l +2

depends on c(r), on global effects, <>



kr
2  l (l+1) N2/(r22 )

constraints on the Brunt-Väisälä
frequency in the inner layers

super-adiabatic T gradient
convective zone boundaries
overshooting

gradient of mean molecular weight
chemical composition profile 

2.1.3 Gravity modes                          2 < N2, Lℓ
2



Constraint on the distribution of the Brunt-Väisälä

Gravity modes – asymptotic regime n >>  

constant  P instead of constant 

frequency in the g-mode cavity with a weight in 1/r    

Seismic indicator: Period spacing



2.2 Non adiabatic stellar pulsations

In order to be observed, an oscillation must be excited

There must be energy exchanges between mass elements
within the star during the pulsation

S  0
Energy conservation equation



















m

L

t

S
T 

exp(it)  term  i   complex eigenvalue  – i

X(r,t) = X(r) sin(t+(r))  exp(t)

Oscillations are damped if  < 0
Oscillations are excited if  > 0



2.2 Non adiabatic stellar pulsations

Energy conservation equation

L

r4

m

L

c

S
i

3

Pdyn

th 








































m

L

t

S
T 

 =  dyn

dyn = (R3/GM)1/2

th = (4r3cPT)/L

S becomes large if th/dyn decreases

Perturbation 



Non adiabatic region
lo

g 
 t

h

dyn

adiabatic region

non adiabatic region

transition region  th  dyn

main driving region
coupling between the dynamical
and the thermal equations

structure of the star 
 oscillation frequency



Excitation mechanisms

Heat engine

Self excited oscillations

Stochastic excitation

Damped oscillations 

Cepheids,  Scuti, SPB,  Cep …

•  mechanism

•  mechanism

Solar-like oscillations

Amplitude  until a limit
cycle is reached

Excitation by turbulent 
motions in a convective zone
« drum excitation »



E2

W

dmr

dm
m

L

T

T

2

1
M

0

2

M

0

2

















Excitation mechanism – heat engine

X(r,t) = X(r) sin(t+ (r)) exp(t)

hot phase:
heat is blocked

cold phase:
heat is released

 > o
positive work

Functioning condition of a thermodynamical engine

work

energy



log T

κ
Hot phase - contraction

SurfaceCenter

Excitation mechanism -  mechanism

ionization zone  opacity bump






L

L

damping0,driving0
r

L

T

T

2

1

dr

dW









dmTlnd

dm)T/T(d

L

L 








log T

κ
Hot phase - contraction

SurfaceCenter

Excitation mechanism -  mechanism

ionization zone  opacity bump

  / < 0    L > 0

  / > 0    L < 0
dL/dr < 0 , T/T > 0  dW/dr > 0

At the hot phase, heat can enter but cannot go out

damping0,driving0
r

L

T

T

2

1

dr

dW





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






L

L



log T

κ Cold phase - expansion

SurfaceCenter

Excitation mechanism -  mechanism

damping0,driving0
r
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T

T
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dr

dW














L

L

  / > 0    L < 0

  / < 0    L > 0
dL/dr > 0 , T/T < 0  dW/dr > 0

ionization zone  opacity bumpAt the cold phase, heat cannot enter but can go out





Charpinet et al. 2001

lo
g 


dW/dr

W

log (1–r/R)

center surface

too close to the surface
 L = constant 
 useless bump

in the adiabatic region
 S =0
 useless bump



The opacity bump must be in the transition region
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SurfaceCenter
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Excitation mechanism -  mechanism

Instability strip



Instability strip
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Stochastic excitation – solar-like oscillations

Turbulent motions at the top of the convective
envelope stochastically hit the photosphere

: damping rate
1/ : mode life-time

Solar-like oscillations result from damped acoustic modes

Excited mode

Stochastically excited mode



« iron »  opacity bump

HeII opacity bump

Excitation mechanism

stochastic excitation
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