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Massive Stars in the Whirlpool Galaxy
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Wind-Blown 
Bubbles in 

ISM
Some key scalings:

 Henize 70: LMC SuperBubble 
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Wind-Blown 
Bubbles in 

ISM
Some key scalings:

WR wind bubble 
NGC 2359 Superbubble in the 

Large Magellanic Cloud

 Henize 70: LMC SuperBubble 
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Pistol Nebula
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Eta Carinae
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Line-scattering in massive winds
P-Cygni Line Profile
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Observed wind line profiles
Resonance line-scattering

O-star P-Cygni profile
Recombination line

WR-star emission profile

−v∞ +v∞−v∞
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Basic Mass Loss Properties

8

Mass Loss rate  M
i

= 4πρvr2

Terminal speed

v∞
Velocity law v(r)
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Massive-Star Mass Loss
1. OB Winds

– opt. thin

2. Wolf-Rayet  Winds

– opt. thick

3. Luminous Blue Variable (LBV) Eruptions

-very opt. thick

 
M

i

~ 10−9 −10−6 M

yr

 
M

i

~ 10−5 −1
M

yr
!!

 
M

i

~ 10−6 −10−5 M

yr

 v∞  1000 − 3000 km / s

 v∞  1000 − 3000 km / s

 v∞  50 −1000 km / s

τ c < 1

τ c > 1

 τ c  1
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  Q: What can drive such extreme mass loss??

A: The force of light!

– light has momentum, p=E/c	


– leads to “Radiation Pressure”	


– radiation force from gradient of Prad

– gradient is from opacity of matter

– opacity from both Continuum & Lines
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Continuum opacity from
Free Electron Scattering

Thompson Cross Section

    

th 

e-

σTh = 8π/3 re
2

 = 2/3 barn= 0.66 x 10-24 cm2

κ e =
σTh

µe

= 0.2(1+ X) = 0.34 cm
2

g
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Radiative acceleration vs. gravity

Radiative 
Force

grad = dν κνFν
c0

∞

∫ GM
r2
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Radiative acceleration vs. gravity

Radiative 
Force

grad = dν κνFν
c0

∞

∫

Γe ≡
ge
g
=
κ eL / 4πr

2c
GM / r2

=
κ eL
4πGMc

GM
r2
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Radiative acceleration vs. gravity

Radiative 
Force

grad = dν κνFν
c0

∞

∫

Γe ≡
ge
g
=
κ eL / 4πr

2c
GM / r2

=
κ eL
4πGMc

 
Γ  2 ×10−5 L / L

M /M

κ F

κ e

GM
r2
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Stellar Luminosity vs. Mass

 

L ~ M 3.3
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Basic Stellar Structure -> L ~ M3

� 

dPgas
dr

= −ρg

Hydrostatic equilibrium (Γ<<1):
cf. Lecture by Prof. Sugimoto
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Basic Stellar Structure -> L ~ M3

� 

dPgas
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= −ρg
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T ~ M
R

ρT
R
~ ρM
R2

=>
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dτ

= F
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Radiative diffusion:
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L ~ M 3

κ

cf. Lecture by Prof. Sugimoto

� 

(1−Γ)4
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Eddington Standard Model (n=3 Polytrope)

~M1

~M
3

~M1

Γ≡1 observed
upper limit
from young, 
dense clusters

Pgas > Prad Prad > Pgas  

Γ=1/2

Wednesday, January 12, 2011

mosir
テキストボックス
Owocki & van Marle 2008, IAUS, 250, 71



Humphreys-Davidson Limit

16

LBVs
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Key points

• Stars with  M ~ 100 Msun have  L ~ 106 Lsun => near 

Eddington limit!

• Suggests natural explanation why we don’t see stars 
much more luminous (& massive) 

• Prad > Pgas => Instabilities => Extreme mass loss
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60 M

120 M
LBV

WR

WNH

Mass loss and stellar evolution:
    Luminous Blue Variable (LBV) winds/eruptions
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60 M

120 M
LBV

WR

WNH

Γ
Γ
Γ
Γ Γ Γ Γ

Mass loss and stellar evolution:
    Luminous Blue Variable (LBV) winds/eruptions

Ib/c

GRBs?

Possible fates:
LBV  WR  SNIbc
LBV  WR  GRB
BH
Pair Instability
Type IIn
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loss, let’s consider ways to get a steady, radiatively 
driven wind.
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• But before trying to understand LBV eruptive mass 

loss, let’s consider ways to get a steady, radiatively 
driven wind.

• Key requirement is for Gamma to increase above 
unity near the stellar surface.

• Two options:
– Assume continuum opacity to increase outward

– More naturally: Desaturation of line-opacity
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Steady Wind Acceleration

 
s = a2

vesc
2 ≈ 0.001 T4

M / R
1

Scale by gravity: dw
dx

= Γ−1

� 

x ≡1− R
r

w ≡
v2

vesc
2

Pot. En. 

Accel.

Kin. En. 
Escape En. 

__________

a ≡ P / ρSound speed
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Steady Wind Acceleration

If we neglect gas pressure, steady force balance is simply:

v dv
dr

= −
GM
r2

+ grad

 
s = a2

vesc
2 ≈ 0.001 T4

M / R
1

Scale by gravity: dw
dx

= Γ−1

� 

x ≡1− R
r

w ≡
v2

vesc
2

Pot. En. 

Accel.

Kin. En. 
Escape En. 

__________

a ≡ P / ρSound speed
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′w = Γ−1

Simplest example of radiatively driven wind
Zero sound speed limit (a=0) with constant “anti-gravity” 

Integrate with B.C.

v∞ = w∞ve = Γ −1 ve

Γ> 1

w(0) = 0

w(x) = w∞x

v(r) = v∞ 1− R
r

⎛
⎝⎜

⎞
⎠⎟

1/2

Note: Density independence  leaves mass loss rate undetermined.
And ignores energy requirement (photon “tiring”).
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Γ(x)= 1+ ′w = 1+ 2βw∞x
2β−1

The “beta” velocity law

Dynamically requires a specific radial increase in opacity:

w(x) = w∞x
2β

v(r) = v∞ 1− R
r

⎛
⎝⎜

⎞
⎠⎟
β

Empirical fitting law:
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Β � 1 � 2

Β � 3

Β � 1

Β � 2

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

w�w�

Β � 1 � 2

Β � 3

Β � 1

Β � 2

0.0 0.2 0.4 0.6 0.8 1.0
x

1

2

3

4

5
�

r→∞r = R
x

Γ

w
w∞

x
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Line-Driven Stellar Winds

• A more natural model is for wind to be 
driven by line scattering of light by 
electrons bound to metal ions

• This has some key differences from free 
electron scattering...
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Driving by Line-Opacity

Γ thin ~QΓe ~ 1000Γe

Optically thin
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Driving by Line-Opacity

Γ thin ~QΓe ~ 1000Γe

Optically thin

Γ thick ~
QΓe

τ
~ 1
ρ
dv
dr

Optically thick
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Optically Thick Line-Absorption 
in an Accelerating Stellar Wind

gthick ~
gthin
τ
~ 1
ρ
dv
dr

� 

τ ≡ κρ vth
dv /dr

Lsob
For strong,

optically thick 

lines:

� 

~ vth
v∞

R*

<< R*
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CAK model of steady-state wind

inertia gravity CAK line-force

Equation of motion:

� 

v ′ v ≈ −GM(1−Γ)
r2 + Q L

r2
r2v ′ v 

˙ M Q 
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
α
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CAK model of steady-state wind

inertia gravity CAK line-force

Equation of motion:

� 

v ′ v ≈ −GM(1−Γ)
r2 + Q L

r2
r2v ′ v 

˙ M Q 
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
α 0 < α < 1

CAK ensemble of
thick & thin lines
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CAK model of steady-state wind

inertia gravity CAK line-force

Equation of motion:

� 

v ′ v ≈ −GM(1−Γ)
r2 + Q L

r2
r2v ′ v 

˙ M Q 
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
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CAK ensemble of
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≈ ≈
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CAK model of steady-state wind

inertia gravity CAK line-force

Equation of motion:

� 

v ′ v ≈ −GM(1−Γ)
r2 + Q L

r2
r2v ′ v 

˙ M Q 
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
α 0 < α < 1

CAK ensemble of
thick & thin lines

≈ ≈

˙ M ≈ L
c2

Q Γ
1− Γ

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

1
α
−1

Mass loss rate
≈gCAK gravity
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CAK model of steady-state wind

inertia gravity CAK line-force

Equation of motion:

� 

v ′ v ≈ −GM(1−Γ)
r2 + Q L

r2
r2v ′ v 

˙ M Q 
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
α 0 < α < 1

CAK ensemble of
thick & thin lines

≈ ≈

~ vesc

Velocity law

v(r) ≈ v∞ (1− R∗ / r)
β β ≈ 0.8

≈inertia gravity

˙ M ≈ L
c2

Q Γ
1− Γ

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

1
α
−1

Mass loss rate
≈gCAK gravity
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CAK model of steady-state wind

inertia gravity CAK line-force

Equation of motion:

� 

v ′ v ≈ −GM(1−Γ)
r2 + Q L

r2
r2v ′ v 

˙ M Q 
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
α 0 < α < 1

CAK ensemble of
thick & thin lines

≈ ≈

~ vesc

Velocity law

v(r) ≈ v∞ (1− R∗ / r)
β β ≈ 0.8

≈inertia gravity

˙ M ≈ L
c2

Q Γ
1− Γ

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

1
α
−1

Mass loss rate
≈gCAK gravity

α ≈ 0.6Wind-Momentum
Luminosity law  

M v∞ ~Q
−1+1/α

L
1
α

Q ~ Z~ Z 0.6L1.7
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Point-star vs. Finite-disk 

I*

r
gr~I*(dv/dr)α

Point-star 
approx.

*

gr~In(dvn/dn)α
In

Finite-disk
integration

r
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Finite-disk reduction of CAK mass loss rate 

� 

′ w +1= fdC ′ w α  C ~ 1 / M
α
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Finite-disk reduction of CAK mass loss rate 

� 

˙ M fd = fd *
1/α ˙ M CAK =

˙ M CAK

1+ α( )1/α ≈ ˙ M CAK /2
� 

′ w +1= fdC ′ w α  C ~ 1 / M
α
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CAK vs. FD velocity law
V (r)
Vesc

β ≈ 0.8

β =
1
2

FD

CAK

1− R* / r
0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

3.0

V (r) ≈V∞ 1− R*
r

⎛
⎝⎜

⎞
⎠⎟
β

V∞ ≈ 3Vesc

V∞ ≈Vesc
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Effect of finite gas-pressure on CAK wind 

s ≡ a2

Vesc
2 ≈ 0.0011− s

w
⎛
⎝⎜

⎞
⎠⎟ ′w +1 = fCc

(1+ δm)α
′w α
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Effect of finite gas-pressure on CAK wind 

δm ≈ +
4 1−α

α
a
Vesc

≈+ 0.1 increases Mdot ~ 10%

Perturbation expansion of FD-CAK soln in s<<1 gives:

s ≡ a2

Vesc
2 ≈ 0.0011− s

w
⎛
⎝⎜

⎞
⎠⎟ ′w +1 = fCc

(1+ δm)α
′w α
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Effect of finite gas-pressure on CAK wind 

decreases Vinf ~ 10% δv∞ ≈ −
2
1−α

a
Vesc

≈− 0.1

δm ≈ +
4 1−α

α
a
Vesc

≈+ 0.1 increases Mdot ~ 10%

Perturbation expansion of FD-CAK soln in s<<1 gives:

s ≡ a2

Vesc
2 ≈ 0.0011− s

w
⎛
⎝⎜

⎞
⎠⎟ ′w +1 = fCc

(1+ δm)α
′w α
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Summary: Key CAK Scaling Results

Mass Flux:

Wind Speed: V∞ ~ Vesc ~ geff

 

i

M 
L1/α

geff
1/α −1
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How is stellar mass
loss affected by (rapid) 

stellar rotation?
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Gravity Darkening

increasing stellar rotation 

F(θ) ~ geff (θ)
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Effect of gravity darkening on 
line-driven mass flux

� 

~ F 2(θ)
geff (θ)

� 

α =1/2
e.g., for

� 

˙ m (θ) ~ F(θ)1/α

geff (θ)1/α−1

Recall:
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Effect of gravity darkening on 
line-driven mass flux

� 

~ F 2(θ)
geff (θ)

� 

α =1/2
e.g., for

w/o gravity darkening, 
if F(θ)=const.

� 

~ 1
geff (θ)

� 

˙ m (θ) highest at
 equator� 

˙ m (θ) ~ F(θ)1/α

geff (θ)1/α−1

Recall:
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Effect of gravity darkening on 
line-driven mass flux

� 

~ F 2(θ)
geff (θ)

� 

α =1/2
e.g., for

w/o gravity darkening, 
if F(θ)=const.

� 

~ 1
geff (θ)

� 

˙ m (θ) highest at
 equator

� 

~ F(θ)w/ gravity darkening, 
if F(θ)~geff(θ)

� 

˙ m (θ) highest at
 pole

� 

˙ m (θ) ~ F(θ)1/α

geff (θ)1/α−1

Recall:
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Effect of rotation on flow speed

� 

V∞(θ) ~ Veff (θ) ~ geff (θ)

� 

ω ≡Ω /Ωcrit *
� 

ω =1

� 

ω = 0.9

� 

geff (θ) ~ 1−ω
2 Sin2θ
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Smith et al. 2003

Wind is faster & denser 
over the poles!

Wednesday, January 12, 2011



  

Be stars
• Hot, bright, & rapidly rotating stars of mass ~ 3-10 Msun
• The “ e” stands for emission lines in the star’s spectrum

 

Hydrogen
spectrum

HαHβ
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Be stars
• Hot, bright, & rapidly rotating stars of mass ~ 3-10 Msun
• The “ e” stands for emission lines in the star’s spectrum

• Emission intensity split 
into blue and red peaks

 

λo

In
te

ns
ity

Wavelength

•  Indicates a disk of gas orbits the star.

• From Doppler shift of 
gas moving toward and 
away from the 
observer .

Hydrogen
spectrum

HαHβ
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3 components of Be star circumstellar gas
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3 components of Be star circumstellar gas
gravity brightened poles
drive denser polar wind
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3 components of Be star circumstellar gas
gravity brightened poles
drive denser polar wind

equatorial Viscous Decretion Disk (VDD)
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3 components of Be star circumstellar gas

eq. disk ablation flow

gravity brightened poles
drive denser polar wind

equatorial Viscous Decretion Disk (VDD)
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Wolf-Rayet winds
• WR winds have 
• Requires multiple scattering

 
p
i

rad = τ
L
c

 M
i

V∞ > L / c

τ =
V∞

ΔV

for lines separated by ΔV <V∞
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Wolf-Rayet winds
• WR winds have 
• Requires multiple scattering

 
p
i

rad = τ
L
c

 M
i

V∞ > L / c

τ =
V∞

ΔV

for lines separated by ΔV <V∞
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Wolf-Rayet Wind Driving

log
Density

Flux

Opacity

Radiative
acceleration

X

=

courtesy
G. Graefener

radius

UV log Wavelength IR
432
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Mdot	  increases	  with	  Γe

Graefener	  &	  Hamman	  2005
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Monte-Carlo models
• Abbott & Lucy 1985; LA 93;  Vink et al. 2001
• Assume beta velocity law, use MC transfer through line list 

to compute global radiative work Wrad and momentum prad
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Monte-Carlo models
• Then compute mass loss rate from:

 
M
i

≈
p
i

rad

Vesc + V∞

 
M
i

≈
2W

i

rad

V 2
esc + V

2
∞

Text

 
logW

i

rad

Ewind

 logM
i

NOTE:
Global

not local 
soln of EOM
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Line-Deshadowing Instability
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Line-Deshadowing Instability

for λ < Lsob: 
iω = δg/δv

     = +go/vth= Ω
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Line-Deshadowing Instability

for λ < Lsob: 
iω = δg/δv

     = +go/vth= Ω

Instability with growth rate 

Ω  ~ go/vth ~vv’/vth~ v/Lsob ~100 v/R

=> e100 growth!
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Non-linear structure for pure-absorption model

Direct force

Integral optical depth

OCR 1988

t(x,r) = dr κ
R

r

∫ ρφ x − u(r ')( )

t(x,r) = dr κ
R

r

∫ ρφ x − u(r ')( )

 
gdir 

gthin
t(x,r)α
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Line-Scattering in an Expanding Wind

Wednesday, January 12, 2011

mosir
テキストボックス
Gayley & Owocki 1994, ApJ, 434, 684



Diffuse Line-Drag
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Time snapshot of wind structure vs. radius

Velocity 

log(Density) 

CAK
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Clumping vs. radius

Clumping
 factor

Radial velocity
dispersion

fcl ≡
ρ2

ρ 2

vdisp ≡ v2 − v 2

 M
i

~ fcl

Tx ~ vdisp
2

   diagnostics
overestimate
ρ2
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Turbulence-
seeded clump 

collisions

Feldmeier et al. 
1997

Enhances Vdisp 
and thus X-ray 

emission
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Chandra X-ray line-profile for ZPup

Fe 
XVII

Fe 
XVII
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observer 
on left

optical 
depth 

contours
τ = 0.3

τ = 1

τ = 3
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observer 
on left

isovelocity contours

-0.8vinf

-0.6vinf

-0.2vinf +0.2vinf

+0.6vinf

+0.8vinf

optical 
depth 

contours
τ = 0.3

τ = 1

τ = 3
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X-ray emission line-profile
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Inferring ZPup Mdot from X-ray lines

Traditional mass-loss rate: 
8.3 X 10-6 Msun/yr

Cohen et al. 2010 best fit: 
3.5 X 10-6 Msun/yr
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Extension to 3D: the “Patch Method”

Wednesday, January 12, 2011



WR Star Emission Profile Variability
WR 140
Lepine & 

Moffat 1999
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3D
“patch”
model

Dessart & 
Owocki 

2002

patch size 
~3 deg

WR Star Emission Profile Variability
WR 140
Lepine & 

Moffat 1999
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2D-H 
+ 

1D-R
nr=1000
nφ=60
Δφ=12deg

Dessart & 
Owocki 2003
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Dessart & Owocki 2005
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Porosity
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Porosity

Incident light
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Porosity

Incident light
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Porosity

• Same amount of material

• More light gets through

• Less interaction between
  matter and light

Incident light
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h 

Porous opacity from optically thick clumps

  

� 

σ eff ≈ 
2 [1− e−τ b ]

  

� 

τ b ≡κρb = κρ / f

� 

κeff≡
σ eff

mb

= κ 1− e
−τ b

τ b

� 

≈ κ
τ b

; τ b >>1

  

� 



“porosity length”
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Porous 
envelopes

h=0.5r

h=r

h=2r

ℓ=0.05r ℓ=0.1r ℓ=0.2r

Porosity
length
h≡ ℓ/fvol

clump size

vol. fill factor
fvol≡(ℓ/L)3

          = 1/fcl
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Porous 
envelopes

h=0.5r

h=r

h=2r

ℓ=0.05r ℓ=0.1r ℓ=0.2r

Porosity
length
h≡ ℓ/fvol

clump size

vol. fill factor
fvol≡(ℓ/L)3

          = 1/fcl
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Super-Eddington 
Continuum-Driven Winds
mediated by “porosity”
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Pistol Star  (Figer et al. 1999)

HD 168625
(Smith 2007)

SN1987A
(courtesy P. Challis) Eta Car

Sher 25
(Brandner et al. 1997)

Massive, Luminous stars:

Several M of circumstellar 
matter resulting from brief 
eruptions, expanding at 
about 50-600 km/s.

IRC+10420

P Cygni

VY CMa
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Eta Carinae
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Eta Car’s Extreme Properties
Present day:
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Eta Car’s Extreme Properties
Present day:

1840-60 Giant Eruption:
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Eta Car’s Extreme Properties
Present day:

1840-60 Giant Eruption:

=> Mass loss is energy or “photon-tiring” limited
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Stagnation of photon-tired outflow

� 

V 2

Vesc
2

� 

m ≡ M
•
Vesc
2

2L*� 

L(r) = L* − ˙ M V 2

2
+ GM

R
− GM

r
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

� 

x =1− R* /r

� 

κ
κEdd

=1+ x
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Photon Tiring & Flow Stagnation 
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Fluidized Bed

71

Spiegel 2006
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Monte Carlo results for 
eff. opacity vs. density in a porous medium

Log(average density)

Log(eff. opacity)
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Monte Carlo results for 
eff. opacity vs. density in a porous medium

Log(average density)

Log(eff. opacity)
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Monte Carlo results for 
eff. opacity vs. density in a porous medium

Log(average density)

Log(eff. opacity)

blobs
opt. thin
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Monte Carlo results for 
eff. opacity vs. density in a porous medium

Log(average density)

Log(eff. opacity)

blobs
opt. thin

blobs
opt. thick
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Monte Carlo results for 
eff. opacity vs. density in a porous medium

Log(average density)

~1/ρ
Log(eff. opacity)

blobs
opt. thin

blobs
opt. thick

Wednesday, January 12, 2011



Monte Carlo results for 
eff. opacity vs. density in a porous medium

Log(average density)

~1/ρ
Log(eff. opacity)

blobs
opt. thin

blobs
opt. thick

“critical density
ρc 
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Power-law porosity

At sonic point:

� 

Γeff (rS ) = Γ ρc

ρS

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
α

≡1
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Power-law porosity

At sonic point:

� 

Γeff (rS ) = Γ ρc

ρS

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
α

≡1
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Power-law porosity

� 

M
•

= 4πR*
2ρSa

At sonic point:

� 

Γeff (rS ) = Γ ρc

ρS

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
α

≡1
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Power-law porosity

� 

M
•

= 4πR*
2ρSa

At sonic point:

� 

≈ L*
ac

Γ−1+1/α
� 

Γeff (rS ) = Γ ρc

ρS

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
α

≡1
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Power-law porosity

� 

M
•

= 4πR*
2ρSa

At sonic point:

� 

≈ L*
ac

Γ−1+1/α
� 

Γeff (rS ) = Γ ρc

ρS

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
α

≡1
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Power-law porosity

� 

M
•

= 4πR*
2ρSa

At sonic point:

� 

≈ L*
ac

Γ−1+1/α
� 

Γeff (rS ) = Γ ρc

ρS

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
α

≡1

� 

M
•
CAK ≈ L*

c 2
QΓ( )−1+1/α
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Effect of gravity darkening on 
porosity-mediated mass flux

� 

˙ m ≡
˙ M 

4πR2

� 

~ F(θ) F(θ)
geff (θ)

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

−1+1/α

� 

˙ m (θ)
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Effect of gravity darkening on 
porosity-mediated mass flux

� 

˙ m ≡
˙ M 

4πR2

� 

~ F(θ) F(θ)
geff (θ)

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

−1+1/α

� 

˙ m (θ)

� 

~ F(θ)w/ gravity darkening, 
if F(θ)~geff(θ)

� 

˙ m (θ) highest at
 pole
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Effect of gravity darkening on 
porosity-mediated mass flux

� 

˙ m ≡
˙ M 

4πR2

� 

~ F(θ) F(θ)
geff (θ)

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

−1+1/α

� 

˙ m (θ)

� 

~ F(θ)w/ gravity darkening, 
if F(θ)~geff(θ)

� 

˙ m (θ) highest at
 pole

� 

v∞(θ) ~ vgeff (θ) ~ geff (θ) highest at
 pole
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Eta Carinae
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Summary Themes
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Summary Themes

•  Continuum vs. Line driving
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Summary Themes

•  Continuum vs. Line driving

• Prolate vs. Oblate mass loss
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Summary Themes

•  Continuum vs. Line driving

• Prolate vs. Oblate mass loss

• Porous vs. Smooth medium
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End Lecture 1
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