原始惑星系円盤における

空隙率進化するダストの合体成長•沈殿過程Grain FormationWorkshop／銀河のダスト研究会＠CPS 2010年9月3日京都大学 理学研究科 宇宙物理学教室 片岡 章雅共同研究者 ：野村英子（京都大学），奥住聡（名古屋大学），中川義次（神戸大学）

イントロダクション

- 惑星形成標準シナリオ
- 円盤形成
- ダストが赤道面に沈殿

ロ ダスト層で固体惑星形成
－ガス惑星形成
口 円盤消失

http：／／www．rikanenpyo．jp／FAQ／tenmon／faq＿ten＿007．html

> ダスト合体成長•沈殿過程 = 惑星形成第一段階

- 惑星形成標準シナリオ
- 円盤形成
- ダストが赤道面に沈殿

ロ ダスト層で固体惑星形成
－ガス惑星形成
口 円盤消失

http：／／www．rikanenpyo．jp／FAQ／tenmon／faq＿ten＿007．html

> ダスト合体成長•沈殿過程 = 惑星形成第一段階

－ダストの合体成長

微惑星形成理論

- ダスト層で自己重力不安定？
- 直接合体成長？

－ダストの合体成長

微惑星形成理論

- ダスト層で自己重力不安定？
- 直接合体成長？

本当にダスト層は形成されるのか

空隙率

－過去の研究はcompactダスト を仮定
－実際は合体成長の過程で porousな成長をする

- 空隙率の影響
- 沈殿速度が低下
- 成長率の変化

本研究では，空隙率が円盤内 ダスト進化に及ぼす影響を調べる

沈殿速度
ガスの抵抗力
\propto（ダスト断面積）
重力
\propto（ダスト質量）

空隙率モデル（Okuzumi＋09）

合体成長するダストの質量－体積 関係のモデル
 （a）BCCA

（b）BPCA
（c） $\operatorname{QBCCA}(\epsilon=0.6)$

－BCCA（D $\approx 2)$ ， $\operatorname{BPCA}(D \approx 3)$ の 2 極限で は良く知られていた
－Quasi－BCCA（Okuzumi＋09）
－衝突するダストの質量（体積）比に応じて空隙率が進化
$V_{1+2}=V_{1}+(1+\chi) V_{2}, \quad$ 但し $\quad \chi=f\left(\frac{V_{1}}{V_{2}}\right)$

本研究ではQBCCA modelを用いて円盤内ダストの空隙率進化を計算

本研究

計算モデル

（衝突確率）$)$（断面積）\times（速度差）速度差としてブラウン運動•沈殿速度差を考慮

$\rightarrow 2$ つの合体成長方程式を同時に解く

計算設定

－最小質量太陽系円盤の地球軌道
ロ モノマー数を50グリッド，空間（z方向） 10 グリッドに設定

- ガスは静止，z 方向一様分布
- 初期ダスト：質量がガスの0．01倍，コンパ クトなI $\mu \mathrm{m}$ ダストのみ
－高さ方向沈殿を考慮（QBCCAモデルで初 めて）

沈殿が起こるかどうかに着目して計算

結果

結果：質量密度分布

議論 ：フラクタル次元

- （質量）$\propto(\text { 半径 })^{D}$
- 沈殿速度

$$
v_{\text {sett }}=\frac{3 \Omega_{K}^{2} z}{4 \rho_{\text {gas }} v_{\text {th }}} \frac{m}{\sigma_{\text {aero }}} \propto r^{D-2}
$$

- 本結果はほぼD ≈ 2
- 沈殿速度は半径に依存しない
- 成長しても沈殿速度が小さく，ダス ト間の速度差も小さい

ダスト沈殿にはフラクタル次元が重要なパラメータ

ガスの抵抗力
（Epstein drag）$\propto r^{2}$

重力 αr^{D}

議論：光学的厚さ

- 計算手法
- 光学的厚さを高さ方向積分
- 組成はシリケイトを仮定
- MG－Mie理論を採用

口 結果
－compactではシリケイトの特徴的構造がダスト成長とともになく なる
－porousでは合体成長してもほと んど形が変わらない

観測との比較（Lommen＋2010）

－観測：5つの星形成領域中の円盤からのダスト放射を解析
－一般的に，ダストが成長す るにつれ10 $\mu \mathrm{m}$ Silicate featureが小さくなりミリ波 のSEDの傾きが緩やかになる
－本研究との比較

＊ただし，比較するためには円盤全体の放射Fluxを計算する必要がある
－まとめ
空隙率進化するダストの合体成長•沈殿過程をシミュレー ションし，地球軌道での計算結果を解析した。円盤内ダスト進化
－compactな場合は500年程度で約 1 cm に成長し沈殿するのに対し，QBCCAモデルの場合は成長速度が遅く沈殿もほと んど起こらない
－\rightarrow ダスト進化にはフラクタル次元が大きな影響を及ぼす光学的厚さ
－compactな場合，光学的厚さは $10 \mu \mathrm{~m}$ のSilicate featureやミリ波・サブミリ波での傾きが変化するのに対し，QBCCAモ デルの場合は光学的厚さはほとんど変化しない。今後はガス分布や円盤上層部での成長を吟味する必要がある

