AEROSOL SPECTROSCOPY FOR ASTROPHYSICAL DUST GRAIN INVESTIGATION

Oct. 8-10 2009 Grain Formation Workshop

Akemi Tamanai (AIU Jena & TU Braunschweig) Harald Mutschke (AIU Jena) Jürgen Blum (TU Braunschweig) Alexander Krivov (AIU Jena) Chiyoe Koike (Osaka Univerisy)

Factors to influence on MIR band profiles

<u>Crystallinity</u> Polymorph (多形) 同一物質が複数の 異なった結晶構造 を取る

e.g. SiO₂ α-quartz (trigonal: 三方晶系) α-tridymite (orthorhombic: 斜方晶系) α-cristobalite (tetragonal: 正方晶系) <u>Chemical</u> <u>compositon</u> Mg, Fe, Al, Si, Ti, Ca, S, ...

e.g. Olivine San Carlos Mg_{1.96}Fe_{0.16}Si_{0.89}O₄

Sri Lanaka Mg_{1.56}Fe_{0.40}Si_{0.91}O₄

(Koike et al. 2003)

Experiment

Samples

<u>Silicate</u>

✓ Forsterite (Mg_2SiO_4) ✓ Fayalite $(Fe_{0.64}Si_{0.36}O_4)$ ✓ Olivine (e.g. $Mg_{1.96}Fe_{0.16}Si_{0.89}O_4)$ ✓ Enstatite (MgSiO_3) ✓ Diopside (e.g. $Ca_{0.45}Mg_{0.54}O_{0.99}O_3)$ ✓ Hypersthene (e.g. $Mg_{0.63}Fe_{0.36}Si_{0.9}O_3)$ ✓ Wollastonite (CaSiO_3) ✓ Kaolinite (Al₂Si₂O₇ • 2H₂O) ✓ Talc (Mg_{3 33}Fe_{0 1}Si₄O₁₀ (OH)₂) $\frac{AI_2O_3}{\checkmark Corundum (\alpha - AI_2O_3)}$ $\checkmark \gamma - AI_2O_3$ $\checkmark \chi - \delta - \kappa - AI_2O_3$

 $\frac{MgAl_2O_4}{TiO_2}$ (Spinel) $\frac{TiO_2}{CaTiO_3}$ (Rutile & Anatase) $\frac{CaTiO_3}{CaTiO_5}$ (Pervoskite) $\frac{Al_2TiO_5}{SiO_2}$

<u>www.elbe.uni-jena.de</u>

<Medium effect>

 \mathcal{E}_{m} N₂ \rightarrow 1.0 KBr \rightarrow 2.3 Csl \rightarrow 3.0

The influence of its electromagnetic polarization.

(Tamanai et al. 2009)

TiO₂ (Rutile)

KBr : (Potassium Bromide) Mixing ratio 1:500 (sample:KBr) d=13mm ; mass=0.2g

CsI : (Cesium lodine) Mixing ratio 1:500 (sample:CsI) d=13mm ; mass=0.22g

Aerosol vs. Pellet Measurements

- Using different dispersion methods
- Particles may transform during the grinding procedure
- Sample structure deformation caused by the high pressurization required

60K

Particle orientation

<Morphological effects>

TiO₂ (Rutile)

(TEM & SEM images: at Pathology w/ Dr. Nietzsche)

Morphological effect --- Size

- Extinction measurements of *large-sized particles* (2 50 μm)
- Mixture measurements --- How small-sized particles exert an influence on the extinction spectra when they are present in a same environment with larger ones (0.5 μm & 5 μm particles)

 $Cry-Mg_2SiO_4$ (< 1 μ m)

Cry-Mg₂SiO₄ (~ 16 μm)

Amorphous SiO₂ (d=0.5 & \sim 5 μ m)

Exp. 1 Large Particles (SiO₂ monosphere)

Crystalline forsterite (Mg₂SiO₄)

Exp. 2 Mixture (monosphere vs. monosphere)

Exp. 2 Mixture (monosphere vs. irregular shape)

- Survived 0.5 μm particles show a clear peak at 8.94 μm.
- The peak at 9.5 µm of the 5 µm particles is strongly influenced by the morphological changes (size & shape).

Summary

<Aerosol vs. Csl pellet measurements>

• Spherical or rounded particles produce larger difference between the spectra compared to the irregular shaped particles.

<Morphological Effects>

 Rounded grains tend to produce double peaked (rectangular) profiles in comparison with irregular shaped grains.

<Large-sized particles vs. Small-sized particles (Forsterite)> Peak positions are not strongly influenced by the particle size, but the bandwidth beyond the 11 μm peak is significantly broadened.

Aixture of Small- and Large-sized particles (SiO₂)> Even mass of the 0.5 µm monosphere particles is 120x less than that of the 5 µm ones, the peak of the 0.5 µm particles clearly appears on the extinction spectrum.