

赤方偏移6クェーサーのダスト: ISMでのダスト成長の重要性

井上昭雄 (大阪産業大学)

2009/10/8

QSO at z=6.42

Fan et al.(2003)

宇宙年齢: 840 Myr at z=6.42 ACDMシナリオにおける構造形成(銀河 の形成と合体)により、z~6で10⁹ Msun のQSO/SMBHを作ることはできる (Li et al.2007)

2009/10/8

2009/10/8

大量のダスト!

SDSS J1148+5251 (z=6.42) Blackhole mass: $3x10^9$ Msun (Willott et al.2003) Dust mass: $2x10^8$ Msun Gas mass: $3x10^{10}$ Msun (Dwek et al.2007)

Color(green—red—yellow): SDSS z-band (~9134 A) Pink: IRAM/MAMBO-2 250 GHz (1.2mm) Blue: VLA 1.4 GHz (21cm)

ダストの起源は?

- 宇宙年齢840Myr以内に~10⁸ Msunのダスト
 - QSOの年齢はもちろん<840Myr
- 現在の銀河系では、Asymptotic Giant Branch (AGB) starsからの寄与が大きい(e.g., Draine 2009)
 - AGB段階への進化にかかる時間:~1Gyr
- 寿命の短い(<10Myr)大質量星の超新星爆発による ダスト供給(Dwek et al.2007)
 - ただし、dust yield > 1 Msun per 1 SNが必要
 - 理論モデルでは~0.1-1 Msun per 1 SN (Nozawa et al.2007)
 - 超新星残骸でのダストの観測では<0.01-0.1 Msun per 1 SN
- ~5 Msunくらいの星は十分早くAGB段階に至る (Valiante et al.2009)
 - 超新星残骸によるダスト破壊は?
- 星間空間での成長が重要?(Draine 2009)

2009/10/8

特異な減光曲線?

銀河のダスト量進化モデル

- Galactic chemical evolution model (銀河の化学進 化モデル)の拡張
- Dwek & Scalo (1980)以来、数グループ
 - Hirashita (1999a,b,c,2000), Inoue (2003)

2009/10/8

銀河のダスト量進化モデル

2009/10/8

銀河のダスト量進化モデル

STAR	$\frac{dM_*}{dt} =$	$\frac{M_{\rm ISM}}{\tau_{\rm SF}} - R$	$S=rac{{M}_{ m ISM}}{ au_{ m SF}}$	-
ISM	$\frac{dM_{\rm ISM}}{dt} =$	$-\frac{M_{\rm ISM}}{\tau_{\rm SF}} + I$	R + I - O	
METAL	$dM_{\rm Z} = \frac{dM_{\rm Z}}{dt}$	$-\frac{M_{Z}}{\tau_{\rm SF}} + Y_{Z}$	$+I_{\rm Z}-O_{\rm Z}$	
DUST	$\frac{dM_{\rm d}}{dt} =$	$= -\frac{M_{\rm d}}{\tau_{\rm SF}} + Y_{\rm d}$	$-\frac{M_{\rm d}}{\tau_{\rm SN}} + \frac{M_{\rm d}(1-\delta)}{\tau_{\rm ac}}$	$\frac{O}{I} + I_{d} + O_{d}$

2009/10/8

星からの供給

$$Y_{\rm d}(t) = \int_{m(t)}^{m_{\rm u}} m_{\rm d}(m, Z[t - \tau_{\rm lf}(m)]) \Phi(m) S(t - \tau_{\rm lf}(m)) dm$$

Stellar dust yield (SNe and AGBs)

$$\langle m_{\rm d} \rangle \approx 10^{-2} \, M_{\rm sun}$$

(Nozawa et al.2007, Zhukovska et al.2008)

Instantaneous recycling approximation (or a constant SFR):

$$\begin{split} Y_{\rm d}(t) &\approx S(t) \left\langle m_{\rm d} \right\rangle \int_{m_{\rm t}}^{m_{\rm u}} \Phi(m) dm \\ &\approx 10^{-3} S(t) = \frac{M_{\rm ISM}}{\tau_{\rm SF} 10^3} = \frac{M_{\rm d}}{\tau_*} \quad \left[\tau_* \equiv \tau_{\rm SF} \left(\frac{D}{10^{-3}} \right) \right] \end{split}$$
(Salpeter IMFのとき)

2009/10/8

超新星残骸による破壊

SN occurrence rate:

$$R_{\rm SN}(t) = \int_{8M}^{40M} \Phi(m)S(t - \tau_{\rm lf}[m])dm$$

$$\approx 10^{-2} S(t) = 10^{-2} \frac{M_{\rm ISM}}{\tau_{\rm SF}}$$

Effective shocked mass:
$$\epsilon m_{\rm SN} \approx 10^{3} M_{\rm sun} \text{ (e.g., McKee 1989)}$$

sun

 $\frac{dM_{\rm d}}{dt} \bigg|_{\rm SN} = \varepsilon Dm_{\rm SN} R_{\rm SN} = \frac{M_{\rm d}}{\tau_{\rm SN}}$

 $\equiv \frac{M_{\rm ISM}}{\varepsilon m_{\rm SN} R_{\rm SN}}$

 $au_{\rm SN}$:

2009/10/8

$$\begin{bmatrix} \frac{dM_{d}}{dt} \end{bmatrix}_{ac} = N_{d}\pi \langle a^{2} \rangle s_{Z} \rho_{Z}^{gas} \langle \upsilon_{Z} \rangle = \frac{M_{d}(1-\delta)}{\tau_{ac}}$$

Dust particle number:

 $\tau_{\rm ac} \equiv \frac{4\langle a^3 \rangle \sigma}{3\langle a^2 \rangle s_{\rm Z} \rho_{\rm gas} \langle \upsilon_{\rm Z} \rangle Z}$

 $N_{\rm d} = \frac{3M_{\rm d}}{4\pi \langle a^3 \rangle \sigma}$

Density of gas-phase metals:

$$\rho_{\rm Z}^{\rm gas} = \rho_{\rm Z} - \rho_{\rm d} = Z \rho_{\rm gas} (1 - \delta)$$

 $\approx \underline{3 \times 10^7 \text{ yr}} \left(\frac{a}{0.1 \,\mu\text{m}} \right) \left(\frac{n}{100 \,\text{cm}^{-3}} \right)^{-1} \left(\frac{T}{100 \,\text{K}} \right)^{-1/2} \left(\frac{Z}{0.02} \right)^{-1}$

第27回Grain Formation Workshop/平成21年度「銀河のダスト」

δ: depletion factor(mass fraction in solid state)

(σ=3 g/cm³, s_z=1, ⁵⁶Feの場合)

2009/10/8

タイムスケール比較1:銀河系 $\frac{dM_{d}}{d} = -\frac{M_{d}}{d} + \frac{M_{d}}{d} - \frac{M_{d}}{d} + \frac{M_{d}(1-\delta)}{d}$ dt $au_{
m SF}$ $au_{
m *}$ $au_{
m SN}$ $\tau_{\rm SF} \approx \tau_* \approx 10 \tau_{\rm SN} \approx 5 \times 10^9 {\rm yr}$ $\tau_{\rm ac} \approx 3 \times 10^7 \,\,{\rm yr} \left(\frac{a}{0.1\,\mu{\rm m}}\right) \left(\frac{n}{100\,{\rm cm}^{-3}}\right)^{-1} \left(\frac{T}{100\,{\rm K}}\right)^{-1/2} \left(\frac{Z}{0.02}\right)^{-1}$ $\tau_{\rm SF} \approx \tau_* >> \tau_{\rm SN} \approx \tau_{\rm ac} / (1 - \delta)$ $\delta \approx 0.9$ (in gas clouds) ダスト量はSN破壊とISM成長のつりあいで決まる 2009/10/8 12 第27回Grain Formation Workshop/平成21年度「銀河のダスト」

タイムスケール比較2:z=6QSO $\frac{dM_{d}}{d} = -\frac{M_{d}}{d} + \frac{M_{d}}{d} - \frac{M_{d}}{d} + \frac{M_{d}(1-\delta)}{d}$ dt $au_{
m SF}$ $au_{
m *}$ $au_{
m SN}$ $\tau_{\rm SF} \approx \tau_* \approx 10 \tau_{\rm SN} \approx 1 \times 10^8 \ {\rm yr}$ $\tau_{\rm ac} \approx 3 \times 10^7 \,\,{\rm yr} \left(\frac{a}{0.1\,\mu{\rm m}}\right) \left(\frac{n}{100\,{\rm cm}^{-3}}\right)^{-1} \left(\frac{T}{100\,{\rm K}}\right)^{-1/2} \left(\frac{Z}{0.02}\right)^{-1}$ $\delta \approx 0$ $\tau_{\rm SF} \approx \tau_* >> \tau_{\rm SN} \approx \tau_{\rm ac} / (1 - \delta)$ (in gas clouds) ダスト量はSN破壊とISM成長のつりあいで決まる 2009/10/8 13 第27回Grain Formation Workshop/平成21年度「銀河のダスト」

z=6QS0の詳しい計算: 設定

- One-zone, one-phase ISM
- Primordial gas infall有り、outflow無し
- SF timescale = Infall timescale = 1x10⁸ yr
- Total gas reservoir = 1x10¹² M_{sun}
- SNe, AGB starsによるダスト形成(m_d=1x10⁻² M_{sun})
- Finite stellar life-time考慮

2009/10/8

z=6QSOの詳しい計算: 結果1

SFR: dotted line

Dust mass solid line: $\epsilon m_{SN} = 1 \times 10^3 M_{sun}$ $\tau_{ac,0} = 1 \times 10^7 \text{ yr}$

 $\begin{array}{l} \text{dashed line:} \\ \epsilon m_{SN} = 1 \times 10^3 \text{ M}_{sun} \\ \tau_{ac,0} = 5 \times 10^6 \text{ yr} \end{array}$

dot-dashed line: $\epsilon m_{SN} = 5 \times 10^2 M_{sun}$ $\tau_{ac,0} = 1 \times 10^7 \text{ yr}$

2009/10/8

z=6QSOの詳しい計算: 結果2

thick: ISM growth thin: SN destruction

 $\begin{array}{l} \text{solid line:} \\ \epsilon m_{SN} = 1 \times 10^3 \ \text{M}_{\text{sun}} \\ \tau_{\text{ac},0} = 1 \times 10^7 \ \text{yr} \end{array}$

 $\begin{array}{l} \mbox{dashed line:} \\ \epsilon m_{SN} = 1 \times 10^3 \ \mbox{M}_{sun} \\ \tau_{ac,0} = 5 \times 10^6 \ \mbox{yr} \end{array}$

dot-dashed line: $\epsilon m_{SN} = 5 \times 10^2 M_{sun}$ $\tau_{ac,0} = 1 \times 10^7 \text{ yr}$

2009/10/8

ダスト量決定機構は普遍的?

- 現在の銀河系でも、z=6 QSOでも、超新星残骸による破壊と星間空間での成長がつりあって、ダスト量は決まっている ⇒ 普遍的な機構
- 組成やサイズ分布も普遍的になるか?
 - "seed"の種類によって成長するダスト種が異なる?
- そもそも、星間空間での降着でどんなダストができるのか? ⇒ 要実験!
- その他: 成長率の見積もりについて (Draine 2009)
 - 帯電の影響は?
 - PAHは負に帯電し、金属イオンを捕獲しやすい(Weingartner & Draine 1999)
 - 星間乱流によりダスト粒子とガスの相対速度が熱速度以上に 大きくなりうる(Yan et al. 2004)

2009/10/8