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1. Some facts on polarization in comets
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Why Polarization?

A convenient way to describe interaction of light with some
target is to use formalism of Stokes vectors and Mueller
matrices. Stokes vector is a four-dimension vector that is
defined as follows:

Stokes vectors are defined in reference to the scattering plane,
which is determined by locations of source of light (the Sun),
target (Comet), and detector of light (Telescope)

Using Stokes vectors one can easily express unpolarized light
S=[/,0,0,0]" 2
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Why Polarization?

If the light is characterized with Stokes vectors, then, interaction
of light with a target can be expressed with a 4x4 Mueller
matrix:

However, if target particles are randomly oriented, Mueller
matrix is reduced as follows:
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Why Polarization?

Interaction of the sun-light with cometary dust particles yields:

M, M, 0 O\ ]\ M”\T

SObs _ MComet >SSun _ 1 M12 M22

(kR)*| 0
0

Only | and Q elements in Stokes vector of the scattered light
are non-zero.

Element Q exceeds U and V for at least two orders of
magnitude.

Here, we focus on the degree of linear polarization P

M12
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P In comets

P in comets varies with phase angle o
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Aperture-averaged P in comets
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Aperture-averaged P in comets

Typical angular profile of P measured in whole comets:

Degree of Linear Polarization in Comets Principal

characteristics
P =—17%
o = 10-11°
P...= 10-30%
Aoy = 90-100°
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Spatially resolved polarimetry of comets

However, P is a time-varying characteristic; it depends on
wavelength A and varies throughout entire coma.

R=4.2 AU R=1.8 AU R=1.

,T?‘U

fr

4400 km

Hadamcik & Levasseur-Regourd, 2003 .
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Spatially resolved polarimetry of comets

Two noticeable features in a coma:
Degree of Linear Polarization, %

Circumnuclear Halo

® circumnuclear haloes o 0. =15°
. min
® jets
: Prax<10% (?)

Onax< 90° (?)

Jets
'Dmin:O%
OLminzoo
=0.67 um Pmax>30%

30 amax>900 (?)
phase angle, deg

Hadamcik & Levasseur-Regourd, 2003
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2. Modeling of light scattering by cometary dust particles
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Simulation of light scattering

We compute light scattering by micron-sized particles using
the discrete dipole approximation (DDA)

Concept:

)

e,

K

Advantages:

(1) arbitrary shape and internal structure
(2) simplicity in preparation of sample particles

. 13
long computations
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Simulation of light scattering

Modeling cometary dust particles

Initial matrix is divided for
surface layer and internal volume,

Parameters for surface layer:
(1) depth;
(2) number of seeds for empty space.

Parameters for internal volume:
(1) number of seeds for a material,
(2) number of seeds for empty space.

[

Legend

@ seeds for empty space
® seeds for empty space
@ seeds for material
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Simulation of light scattering

CIVIN WV ds (s.l.) = 100
seeds (s.l.) —

sparse
agglomerate depth (s.l.) — 0.5%
o =0.169 seeds (empty) — 50

| MR AR seeds (matter) — 21
agglomerated A i seeds (s.l.) — 100
debris depth (s.l.) — 0.5%
p=0.236 seeds (empty) — 20

i |

seeds (matter) — 21

pocked | - - seeds (s.l.) — 100
spheres depth (s.l.) - 12.5%
o =0.336 seeds (empty) — O

| | seeds (matter) — 50
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Simulation of light scattering

Other parameters of light scattering by small particles

(1) size parameter x = 2mur/\ (r — radius of circumscribing
sphere and A — wavelength).

In most cases, x varies from 1 throughout 24-40

(2) complex refractive index m (it relates chemical and mineral
composition of the given material with its ability to scatter
and absorb light)

Agglomerated debris particles are considered at 2/(!)

various m:
1.1+0i/, 1.2+0/, 1.313+0/, 1.313+0.02/, 1.313+0.05/,
1.313+0.1/, 1.4+0/, 1.4+0.02/, 1.4+0.05/, 1.4+0.1/, 1.5+0/,
1.5+0.02/, 1.5+0.05/, 1.5+0.14, 1.6+0.0005/, 1.6+0.01/,
1.6+0.02/, 1.6+0.05/, 1.6+0.1/, 1.6+0.15/, 1.7+0i,
1.7+0.02i, 1.7+0.05/, 1.7+0.1/, 1.758+0.0844
1.855+0.45/, 2.43+0.59/
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Simulation of light scattering
Averaging:

(1) over 500+ random shapes.
In addition, light-scattering properties of each particle are
averaged over 100 azimuthal orientations (i.e., particle is
rotated around direction of the incident light propagation).
Standard deviation of the degree of linear polarization P
does not exceed 1% throughout all phase angles.

(2) aver-particle sizes with power-law size distribution
r .

The power index a is varied from 1.5 to 3.5.
Such size distribution is well consistent with in situ study of
comet 1P/Halley (e.g., Mazets et al., 1986)
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3. Cometary dust as seen from its negative polarization

18
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Negative polarization for various Re(m)

m=1.2+0i
- m=1.313+0i
-~ m=1.4+0;
m=1.5+0i
- m=1.6+0.0005/
- m=1.74+0i

A l Al L L l AL L 1 l L T -

10 20 30 " 10 30
size parameter x size parameter x

Increase of Re(m):

(1) does not affect amplitude in function P, vs. x
(2) shifts maximum in function P .. vs. x toward smallef x
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Negative polarization for various Im(m)

-~ m=1.6+0.0005/

- m=1.6+0.02/
m=1.6+0.05i

- m=1.6+0.1i

-~ m=1.6+0.15i

A l A A L A l A L A A l ' A L A

10 20 30 " 10 20 30
size parameter x size parameter x

Increase of Im(m):

(1) decreases substantially P,

(2) does not affect location of maximum in function P, 20vs. x
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Negative polarization for various Im(m)

- m=1.6+0.1i

- m=1.7+0.1/
m=1.6+0.15i

- m=1.855+0.45/

- m=2.43+0.59i

A l A A L A l A L A A l ' A L A L . . “

10 20 30 " 10 20 30
size parameter x size parameter x

Highly absorbing (Im(m)=0.15) carbon-rich materials cannot
reproduce the negative polarization measured from a whole
cometary coma because P.;.=0 throughout all x. 21
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Negative polarization for various Re(m)

m=1.2+0i
- m=1.313+0i
-~ m=1.4+0;
m=1.5+0i
- m=1.6+0.0005/
- m=1.74+0i

A l | - l

25 3 2
power index a power index a

Size-averaging:

(1) substantially dampens P_.. as compared to that for fixed size
(2) makes o, an extremely stable 2
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Negative polarization for various Im(m)

-~ m=1.6+0.0005/

- m=1.6+0.02/
m=1.6+0.05i

- m=1.6+0.1i

-~ m=1.6+0.15i

A l A A L l

2.5 3 2 25 3
power index a power index a

Size-averaging constrains absorption of cometary materials:

(1) in cometary haloes Im(m)<0.02
(2) in whole coma Im(m)<0.07—-0.08 =
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Negative polarization vs. morphology at m=1.313+0i/

A l A A A A l A A A L l A A A ' L ' l 1 1 1 1 l 1 ' 1 1
2.5 3 2 2
power index a power index a

Particle morphology does not affect the negative polarization
significantly. 24
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Negative polarization vs. morphology at m=1.6+0.0005/

=
-
-15F
[ S 1

A l A A A A l A A A L l A A A ' L ' l 1 1 1 1 l 1 ' 1 1
1.5 2 2.5 3 2 2
power index a power index a

Particle morphology does affect P_. at a<2.5. It is comparable

with accuracy in polarimetry of comets (i.e., +1%). The impact of
the morphology on P, is much less than that of absorption.
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Negative polarization vs. morphology at m=1.5+0.1/

A l | S S l l

A A A L L l A A A ' L ' 1 1 1 1 1
2 2.5 3 2 2
power index a power index a

Particle morphology does not affect the negative polarization
significantly. 26
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Summary on the negative polarization

1. The negative polarization produced by single-scattering
irregularly shaped particles is unambiguously dependent on
Im(m). It can be used to determine local excess for Mg-rich
silicates and carbonaceous materials in a cometary coma.

2. The index a in power-law size distribution may also affect
considerably the negative polarization. However, its solely
variation cannot explain dramatic difference in negative
polarization of whole coma, circumnucleus halo, and jets.

3. True morphology of irregular agglomerates produces only
minor impact on the negative polarization. It is typically less
than the accuracy in polarimetric observations of comes.

27
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4. Cometary dust as seen from its positive polarization

28
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Positive polarization for various Re(m)

-_140
- m=1.2+0i

120 & m=1.313+0i
' - m=1.4+0i
1100 m=1.5+0i
- m=1.6+0.0005/
- m=1.74+0i

180

160

1 WL B T | PR T T PR T 1 1 1 PR T T | 4 40
10 20 30 ' 40
size parameter x size parameter x

Increase of Re(m) dramatically decreases the amplitude of

positive polarization P, ..
29
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Positive polarization for various Im(m)

_140

_ -~ m=1.6+0.0005/
120 - m=1.6+0.02;

! m=1.6+0.05i

d 100 - m=1.6+0.1/

-~ m=1.6+0.15/

180

160

" 1 1 I TRy D I, T e ) PR T T 1 1];111“40
10 20 30 ' 20 30 40

size parameter x size parameter x

Increase of absorption substantially increases P, ... It also makes
a non-monotonic behavior in function P, _, vs. X; whereas, lowest

value of P__, is achieved at x=10-16. 3
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Positive polarization for various Re(m)

3 140
- m=1.2+0i

120 & m=1.313+0i
' - m=1.4+0i
1100 m=1.5+0i
- m=1.6+0.0005/
- m=1.74+0i

$ 80

160

15 ARy MY P | P T T .‘..l....ln--nlnn--<40
25 il B 2 2.9 - 3.9

power index a power index a

Size-averaging constrains the refractive index of cometary
materials. Whole-coma P, _, cannot be reproduced with optically

soft materials at Re(m)<1.3. !
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Positive polarization for various Im(m)

1 140

) - m=1.6+0.0005/
120 - m=1.6+0.02i

' m=1.6+0.05i

: 100 - m=1.6+0.1i

- m=1.6+0.15/

180

160

1 gy gy g g <y Uy f-g g Bog goog g goog goog A111~40
2.5 A 7 X 3.5

power index a power index a

Size-averaging constrains the material absorption in comets.
Whole-coma P, _, cannot be obtained at Im(m)z0.1. Mixture of

particles with high and low Im(m) could fit the observations.
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Positive polarization vs. morphology at m=1.313+0i

P

0
max?® A)

L ' A ' ' l

2.5
power index a power index a

Particle morphology does not affect the positive polarization
significantly. Nevertheless, potentially, such difference in P, _,

could be detected. 33
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Positive polarization vs. morphology at m=1.6+0.0005/

P

0
max?® A)

L ' A ' ' l

2 2.5 S i) 2.5
power index a power index a

Particle morphology does not affect the positive polarization
significantly. Nevertheless, potentially, such difference in P, _,

could be detected. 34
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Positive polarization vs. morphology at m=1.5+0.1i

P

0
max?® A)

L ' A ' ' l

2 2.5 3
power index a power index a

Particle morphology does not affect the positive polarization
significantly. Nevertheless, potentially, such difference in P, _,

could be detected. 35
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Summary on the positive polarization

1. The positive polarization produced by single-scattering
irregularly shaped particles is unambiguously dependent on
Im(m). It can be used to determine local excess for Mg-rich
silicates and carbonaceous materials in a cometary coma.

2. P__, observed in comets cannot be reproduced with

optically soft Re(m)<1.3 and highly absorbing Im(m)=0.1
materials. Thus, abundance of carbonaceous materials
(with high Im(m)) in comets should imply simultaneous
presence of weakly absorbing cometary materials.

3. True morphology of irregular agglomerates produces only
secondary effect on the positive polarization.

36

201252 H22H/KEH



5. Estimation of the geometric albedo with the Umov effect

37
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What is the Umov effect?

The brighter is a powder,
the lower is its linear polarization

Umov, Phys. Zeits. 6, 674-676 (1905)

Origin of the effect

depolarization that is caused by

N Jmov (1846-1915) multiple scattering in regolith

In 1960-1970, the qualitative law has been quantified as follows:

log(P linearly depends on log(A).

max)
38
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the Umov effect for the Moon

various sites on the Moon

® =042 um
® }=0.65um

Shkuratov & Opanasenko, Icarus 99, 468-484 (1992) 1
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the Umov effect for single-scattering particles?

Why such extension could make sense:
(1) The Umov effect holds for quite dark surfaces

(2) In dark surfaces, single-scattering contributes
substantially into the whole light scattering

Geometric albedo for the case of single particles:
A=(M,,(0)m)/(K2G)

Here, M,,(0) is the total intensity Mueller matrix element at

backscattering, kK — the wave number, and G — the geometric
cross-section of the particle.
40
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A in comets from the Umov effect

Agglomerated debris particles p=0.236
Im(m)=0.1-0.15 Im(m)=0.02-0.05

m=1.313+0.1i 1 [« m=15+0.02i | [ » m=12+0i
m=1.5+0.1i : - m=1.5+0.05; 1 - ® m=1.313+0i
m=1.6+0.1; | I m=1.6+0.02; ‘ | m=1.4+0i
m=1.6+0.15; - - m=1.6+0.05/ 1 - o m=].5+0i
m=1.7+0.1i 1 [ ® m=1.6+0.0005i
- ® lm=l.7+l()i

..-|.5 -I"" .. -2 -1.5“ -1 -0.5
log(A4) log(A)

A=0.11-0.21
Whole comets A=0.04-0.08
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A in comets from the Umov effect
Agglomerates with different morphology
m=1.313+0i m=1.6+0.0005; m=1.5+0.1i

| PEERLAEL Brl ia (L Dl ov bt g e e 1| T T T Tr vy r

Variation of agglomerate morphology produces rather small
impact on the diagrams log(A) vs. log(P 42

max)
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Conclusion

1.Degree of linear polarization is an important source of
information on dust in comets. Both, the negative and the
positive polarization branches reveal dramatic dependence
on the material absorption. Thus, they could be used for
detection of time- and spatial variations in chemical
composition.

2.Maximum of the positive polarization P, correlates with the

geometric albedo A of target particles through the Umov
effect. When applied to whole coma, it provides A=0.04-0.08
that is well consistent with other methods.
However, the Umov effect predicts also a substantial variation
of A throughout coma. For instance, in the innermost part of
coma, i.e., circumnucleus halo, it could be a few times higher
as compared to whole coma A=0.11-0.21.
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